
Shahraiz Qureshi (009551906)
Ka Nam Canaan Law (015275299)
Cheuk Hong Ip(015265588)

Data Jobs Report

Introduction

The analytics field is on the rise worldwide. In this project, we take a closer look

at the US job market about DA jobs. This analysis helps understand different features

like which keywords are used in job titles for data related roles and which industry posts

the most data jobs, etc. The Datasets from sources were used and the ETL process

along with other software was used to analyze and visualize data. The goal of the

project was to take data from multiple sources and use different data related software to

analyze data and present the finding. We found different sources of data on job opening

positions for data analysts,data engineers, and data scientists. The datasets were

gathered from different sources such as Kaggle and glassdoor. That data was cleaned

and refined using jupyter and python using pandas and numpy. Then the new tables

were taken and uploaded to AWS S3 buckets. That data was bulk loaded into MYSQL

to run queries. Then tableau was used to visually present the data. There were different

datasets containing more than 2000 job listings for data engineer,scientist, analyst and

positions, with features such as Salary Estimate, Location, Company Rating (From

Glassdoor), Job Description and more. The company rating is based on the employees

who work in the company while glassdoor will calculate the ratings from their algorithm.

The queries were used to answer important questions like What is the average

estimated salary for a data related job in each city around the Bay Area? How many

data related jobs are in each state, and other information the analysis could extract.

Data-analyst-vs-data-engineer-vs-data-scientist

This article discusses the key difference and similarities between the three data

analysts,engineer, and scientist. The article starts out with talking about data analysts

mentioning that most entry level professionals start off with the position as Data analysts. The

position mostly requires a bachelors and a good understanding of statistical analysis. The

primary expectation is that the person understands data handling, modeling, and other reporting

techniques along with good understanding of the business. Then there is the data engineer

position which requires either a masters in the data-field or plenty of experience as an data

analyst. They need to be able to create and integrate API’s, understand data pipelines, and

lastly continuous performance optimization. Lastly, data scientist this role usually fits a person if

they have acquired ample amount of experience in various data science skill sets, which include

but are not limited to advanced statistical analysis, complete understanding of machine learning

and many others. They basically analyse and interpret complex data. The goal of reading this

article was to determine if we take the collected data sets and analyze them will they

relate to this article. After analyzing the results it was determined this article was

correct. The group did an Analysis on job description keyword searching from each job

category determining data analyst need to know data warehousing, some sort of

progrogramming primarily python. They need to know SQL data reporting and

visualization. Secondly data engineers need to know ETL, Advance programing, data

architecture, machine learning knowledge or concepts. Lastly, data scientists need to

know advanced statistical analysis, data mining, in-depth programming, data

optimization and other decision making skills. In conclusion, what the article stated

closely resembled the group's findings.

Python for ETL

For the project, we were using python pandas to do ETL, extracted some useful

information, cleaned the data, reformatted data values and loaded into a couple

databases that we work on by using three datasets which are originally from Glassdoor

in kaggle. We mainly focused on jobs that are related to the data field such as data

analysis, data engineer and data science. For the ETL, we mainly focused on using

python libraries such as pandas and numpy. For extracting some useful information,

cleaning the data and formatting data values, we changed the data values by editing or

dropping some of the data and splitting useful data values into a new column.

First, we found an issue that the data values were not consistent in some

datasets and some of the job titles did not match the job category from python.

Therefore, by using the pandas function of str.contains, we can confirm if the text of

data engineer appeared in the column of “Job Title”. For example, the job title was

senior data engineer but it actually appeared in the data science dataset with the job

category of data science.

In order to solve this issue, we extracted those mismatched rows and insert it

into a new data frame, then we updated the job category as data engineer from data

science.

Second, from above graphs, we did not want a column of salary estimates with

data values 37K-66K(Glassdoor est.) that was not able to compute and we also wanted

to separate City and State to make a data becoming useful information for querying in

the database system and analyze the data by using some useful coding such as regular

expression, df.str.replace , df.str.extract, and df.str.split. We wanted to replace ‘K’ to

‘000’ and extracted the estimated salary into two columns, and we wanted to split

location with the data values such as “New York, NY” into two columns named City and

State. Here is the example after the formatting and cleaning with the codings.

After all the data formatting, extracting and cleaning, we splitted and grouped

some columns into its own table or csv file for our ER model, loading into MYSQL

database, and our visualization in Tableau. For the last step of ETL, we loaded datasets

into the MYSQL database by using a python library called mysql.connector to connect

and query to insert the data into the database. Here is the example for python.

Create Table and Load for Database Used

This is the image of querying for table creation.

This is the images of loading the data into MySQL database for querying and ER

Model from python with a python library called mysql.connector

ER model from MYSQL Workbench

Based on the dataset that we cleaned from python pandas to do ETL(Extract

Transform and Load) , We created a star schema for our data model which contains a

factless fact table called measurement with forigen keys(location_id, job_id and

comapny_id). We have three dimensional tables which are job, company and location.

Each dimensional table contains their id and attributes. The main reason we do not

make the model to be a snowflake with higher dimension hierarchy to separate city and

state is that we want to have less join in the query and better performance for querying

in the relational database without any time out. There is a trade off by using star

schema which is data redundancy and disk storage.

Query For The Brief Summary

We used the MYSQL database system to query some data and made
visualizations in Tableau after we cleaned and created the database and tables.

Avg rating for each Job Category
Finding: The average rating of all three category are similar, but data eng

How many data related jobs are in each state?
Finding: There are more data related jobs and opportunities in California and Texas
compared to other states.

What is the Average estimated salary for a data related job in each
city around the Bay Area?
Finding: Although Redwood City and Menlo Park have the highest average estimated
salary in the bay area, all the main cities in the bay area have about the same average
salary.

Visualization (Tableau)

Salary of Sector by Job Category

Finding: Data engineers in the non-profit sector has the highest salary compared to all
other sector and job category.

Average of Max and Min Estimated Salary by Size of Company

Finding: Data scientist has the highest salary. Data Engineer is the second highest and
Data Analyst is the lowest among the three.

Dashboard 1

Number of Job Category by State

Finding: California and Texas have the highest Number of Job Categories in the U.S.

Numbers of Data Related Job by Cities

Dashboard 2

Dashboard 2 shows the number of job categories by each state; it is also drilled into
cities. The number of jobs in cities can be judged by the size of the circle.

Number of Data Related Jobs in California

Finding: In California, data scientists have the most number of jobs. Data analyst is
second and data engineer is the least.

Salary(USD) by Rating

Finding : Salary tend to be higher when the company rating is higher in California

Dashboard 3

This dashboard mainly compares the difference between California and Texas since
they have the most data related job in United State.

Analysis(Job Description Keyword Searching From Each
Job Category)

The reason we applied keyword search and word counting on job descriptions

was because it was too complicated to read all the job descriptions that match its

respective positions (data analyst, data engineer, and data scientist), to see the

requirements that match the skill set needed for each data job position. We used python

coding to do a quick keyword search from all the job descriptions, and aggregate the

results to figure out how the word pattern in each data job description was tied to its

respective job position. After we got the results, we loaded it into a csv file and text files

for visualization in Tableau and created graphs and word clouds to display the results.

Here is an example of coding by using nltk and sklearn library in python.

Data Analysis
The graph is showing all the keywords that we learn from our classes. The bigger

the font is, the more frequent the keyword is in a job description.

The graph is showing all the keywords that we learn from our classes. The bigger
the box is, the more frequent the keyword is in a job description.

Findings:

Based on the visualization above, we can see that data analysts need more skills

and knowledge on business and management with programming skills like sql and

python. On the other hand, data analysts do not need so much skill and knowledge from

machine learning and cloud systems to work in the data analysis field.

Data Science
The graph is showing all the keywords that we learn from our classes. The

biggest font it is, the most frequent it is in a job description.

The graph is showing all the keywords that we learn from our classes. The bigger
the box is, the more frequent the keyword is in a job description.

Findings:

Based on the visualization above, machine learning is moving up from the bottom

of the list to top 5 keywords compared to the list in data analysis. As data scientists,

they require more knowledge and skills in machine learning along with the programming

and software skills such as python and sql.

Data Engineer
The graph is showing all the keywords that we learn from our classes. The

biggest font it is, the most frequent it is in a job description.

The graph is showing all the keywords that we learn from our classes. The bigger
the box is, the more frequent the keyword is in a job description.

Findings:

Based on the visualization above, we can see that as a data engineer they are

required more software skill and software design compared to two previous graphs .

They are also required to be able to use or have experience on cloud systems such as

AWS. On the other hand, data engineers have less requirements on knowledge of

machine learning.

Overall Comparison
In this comparison, it shows what the job requirements are based on different

roles. The higher the position goes, the more higher-level skill it requires.

Conclusion

Since we are all students within the MSDA program, the motivation for our

project goal learn from the core of every Data Analysis project ie. Using a database!

And considering the volume of data being generated every day, we plan to understand

the very fundamentals of using a NoSQL database in our day to day life. This research

will help our success after graduation to scope what types of jobs are available from the

various data sets by allowing us to by understanding the specific requirements

companies have. We plan to use this research to assist with what gaps in knowledge

we may have and help us progress to the right stages, where obtaining these positions

will come easily. Most of our excitement comes from where (LinkedIn, Glassdoor, etc.)

we can find these job opportunities, what salary ranges they offer, company culture, and

the range of skills we will further develop.

Source:
https://github.com/picklesueat/data_jobs_data

https://www.glassdoor.com/Salaries/index.htm

https://www.kaggle.com/andrewmvd/data-analyst-jobs

https://www.kaggle.com/andrewmvd/data-scientist-jobs

https://www.kaggle.com/andrewmvd/data-engineer-jobs

https://www.edureka.co/blog/data-analyst-vs-data-engineer-vs-data-scientist/

https://www.wordclouds.com/

Our Project and Coding link in GitHub:

https://github.com/cheukhongip/228CowSystemProjectCoding

Query for creating table:

create table job(
job_id int not null,
Job_Title varchar(200),
Job_Description TEXT(25000),
JobCategory varchar(100),
Rating float,
Salary_Min_Estimate int,
Salary_Max_Estimate int,
Constraint Pk_JOB Primary Key (job_id)
);
create table company(
company_id Int not null,
Company_Name varchar(200),
Founded int,
Type_of_ownership varchar(200),
Size_employee float,
Industry varchar(100),
Sector varchar(100),
Constraint Pk_Company Primary Key (company_id)
);

create table location(
location_id Int not null,
City varchar(100),

https://github.com/picklesueat/data_jobs_data
https://www.glassdoor.com/Salaries/index.htm
https://www.kaggle.com/andrewmvd/data-analyst-jobs
https://www.kaggle.com/andrewmvd/data-scientist-jobs
https://www.kaggle.com/andrewmvd/data-engineer-jobs
https://www.edureka.co/blog/data-analyst-vs-data-engineer-vs-data-scientist/
https://www.wordclouds.com/
https://github.com/cheukhongip/228CowSystemProjectCoding

State varchar(100),
Constraint Pk_location Primary Key (location_id)
);

create table measurement(
location_id int not null,
company_id int not null,
job_id int not null,
Constraint Pk_measurement Primary Key (location_id,company_id,job_id),
Constraint Fk_j foreign key (job_id) references job(job_id),
Constraint Fk_c foreign key (company_id) references company(company_id),
Constraint Fk_l foreign key (location_id) references location(location_id)
);

Querying for Summary and visualization

Avg rating for each Job Category Select j.JobCategory , avg(rating)
From job j , measurement m , location l
where j.job_id = m.job_id and l.location_id =
m.location_id
group by j.JobCategory;

How many data related jobs are in each
state?

Select State, Count(JobCategory) from
location Natural Join job Natural Join
measurement Group by State;

What is the highest estimated salary in each
city In CA?

Select City ,
Round(Avg(Salary_Max_Estimate) ,0)
from job Natural Join measurement
Natural Join location
where
Trim(City) = "San Mateo" or Trim(City) = "San
Jose" or
Trim(City) = "San Ramon" or Trim(City) =
"Santa Clara" or
Trim(City) = "Stanford" or Trim(City) = "Walnut
Creek" or
Trim(City) = "Mountain View" or Trim(City) =
"Palo Alto" or
Trim(City) = "Pleasanton" or Trim(City) =
"Redwood City" or
Trim(City) = "San Rafael" or Trim(City) =
"Sunnyvale" or
Trim(City) = "Union City" or Trim(City) = "San
Francisco" or
Trim(City) = "Los Gatos" or Trim(City) = "Menlo
Park" or

Trim(City) = "Milpitas" or Trim(City) =
"Concord" or
Trim(City) = "Cupertino" or Trim(City) = "Foster
City" or
Trim(City) = "Fremont" or Trim(City) =
"Berkeley"
group by City;

Python Coding for ETL

import pandas as pd
import numpy as np
import string

da = pd.read_csv("DataAnalyst.csv",index_col=0)
de = pd.read_csv("DataEngineer.csv",index_col=0)
ds = pd.read_csv("DataScientist.csv",index_col=0)

#Drop Unused Column and ROW
da['Rating'] = da['Rating'].dropna()
de['Rating'] = de['Rating'].dropna()
ds['Rating'] = ds['Rating'].dropna()
da['Salary Estimate'] = da['Salary Estimate'].dropna()
de['Salary Estimate'] = de['Salary Estimate'].dropna()
ds['Salary Estimate'] = ds['Salary Estimate'].dropna()
print('1',da['Rating'].isnull().values.any())
print('2',de['Rating'].isnull().values.any())
print('3',ds['Rating'].isnull().values.any())
print('4',da['Salary Estimate'].isnull().values.any())
print('5',de['Salary Estimate'].isnull().values.any())
print('6',ds['Salary Estimate'].isnull().values.any())
print('7',da['Rating'].isin([-1.0]).values.any())
print('8',de['Rating'].isin([-1.0]).values.any())
print('9',ds['Rating'].isin([-1.0]).values.any())

#Drop -1.0 in Rating
index_names = da[da['Rating'] == -1.0].index
da.drop(index_names, inplace = True)
index_names1 = de[de['Rating'] == -1.0].index
de.drop(index_names1, inplace = True)
index_names2 = ds[ds['Rating'] == -1.0].index
ds.drop(index_names2, inplace = True)

print('7',da['Rating'].isin([-1.0]).values.any())
print('8',de['Rating'].isin([-1.0]).values.any())
print('9',ds['Rating'].isin([-1.0]).values.any())

Drop Column
da = da.drop(['Revenue','Competitors','Easy Apply'], axis = 1)
de = de.drop(['Revenue','Competitors','Easy Apply'], axis = 1)
ds = ds.drop(['Revenue','Competitors','Easy Apply','index'], axis = 1)

Reformat data values
Chenage K = 000
da["Salary Estimate"] = da["Salary Estimate"].str.replace('K','000',regex = False)
de["Salary Estimate"] = de["Salary Estimate"].str.replace('K','000',regex = False)
ds["Salary Estimate"] = ds["Salary Estimate"].str.replace('K','000',regex = False)

Remove (Glassdoor est.) Split into "Salary_Min_Estimate" & "Salary_Max_Estimate"
da["Salary_Min_Estimate"] = da["Salary Estimate"].str.extract('(\d+)', expand = True)
da["Salary_Max_Estimate"] = da["Salary Estimate"].str.extract('\d+\W+\s*(\d+)',expand = True)
de["Salary_Min_Estimate"] = de["Salary Estimate"].str.extract('(\d+)', expand = True)
de["Salary_Max_Estimate"] = de["Salary Estimate"].str.extract('\d+\W+\s*(\d+)',expand = True)
ds["Salary_Min_Estimate"] = ds["Salary Estimate"].str.extract('(\d+)', expand = True)
ds["Salary_Max_Estimate"] = ds["Salary Estimate"].str.extract('\d+\W+\s*(\d+)',expand = True)

da = da.drop(['Salary Estimate'], axis = 1)
de = de.drop(['Salary Estimate'], axis = 1)
ds = ds.drop(['Salary Estimate'], axis = 1)

Reformat companyname
da["Company_Name"] = da["Company Name"].str.replace('\n\d\.\d','' ,regex = True)
de["Company_Name"] = de["Company Name"].str.replace('\n\d\.\d','' ,regex = True)
ds["Company_Name"] = ds["Company Name"].str.replace('\n\d\.\d','' ,regex = True)
da = da.drop(['Company Name'], axis = 1)
de = de.drop(['Company Name'], axis = 1)
ds = ds.drop(['Company Name'], axis = 1)

Reset Index
da = da.reset_index()
de = de.reset_index()
#da = da.drop(['index'], axis = 1)

da['Location'] = da['Location'].replace(['Greenwood Village, Arapahoe, CO'], 'Greenwood
Village Arapahoe, CO')
da[['City','State','1']]=da['Location'].str.split(",",expand=True)

da = da.drop(['1'],axis=1)
de[['City','State']]=de['Location'].str.split(",",expand=True)
ds[['City','State']]=ds['Location'].str.split(",",expand=True)
da = da.drop(['Location'],axis=1)
de = de.drop(['Location'],axis=1)
ds = ds.drop(['Location'],axis=1)

de[['City_Headquarter','State_Headquarter_Country']]=de['Headquarters'].str.split(",",expand=
True)
ds[['City_Headquarter','State_Headquarter_Country','1']]=ds['Headquarters'].str.split(",",expan
d=True)
da[['City_Headquarter','State_Headquarter_Country','1']]=da['Headquarters'].str.split(",",expan
d=True)

da = da.drop(['Headquarters'],axis=1)
de = de.drop(['Headquarters'],axis=1)
ds = ds.drop(['Headquarters'],axis=1)

ds = ds.reset_index()
ds = ds.drop(['index'],axis=1)
da['Size_employee'] = da['Size'].str.extract('\d+\s*\W+\s*(\d+)',expand = True)

ds = ds.drop(['1'],axis=1)
da = da.drop(['1'],axis=1)

da['Size'] = da['Size'].str.replace('+',' to 10000',regex = False)
ds['Size'] = ds['Size'].str.replace('+',' to 10000',regex = False)
de['Size'] = de['Size'].str.replace('+',' to 10000',regex = False)

da['Size_employee'] = da['Size'].str.extract('\d+\s*\w+\s*(\d+)',expand = True)
de['Size_employee'] = de['Size'].str.extract('\d+\s*\w+\s*(\d+)',expand = True)
ds['Size_employee'] = ds['Size'].str.extract('\d+\s*\w+\s*(\d+)',expand = True)

ds = ds.drop(['Size'],axis=1)
da = da.drop(['Size'],axis=1)
de = de.drop(['Size'],axis=1)

da.insert(2,"JobCategory",'DataAnalyst')
de.insert(2,"JobCategory",'DataEngineer')
ds.insert(2,"JobCategory",'DataScientist')
ds[~ds['Job Title'].str.contains("Data Engineer", case=False)]

ds1e = ds.loc[ds['Job Title'].str.contains("Data Engineer", case=False)]
ds1e['JobCategory'] = 'DataEngineer'
ds1e

all_in_one = pd.concat([da, de,ds1e, ds], axis=0)
all_in_one.to_csv('Alltest.csv',index = True)
a = all_in_one.drop_duplicates(subset = ['Job Title', 'Company_Name'],keep =
'first').reset_index(drop = True)

#a['Salary_Max_Estimate']=a['Salary_Max_Estimate'].dropna()
a.dtypes

a['Salary_Min_Estimate'] = a['Salary_Min_Estimate'].astype(int)
a['Salary_Max_Estimate'] = a['Salary_Max_Estimate'].fillna(0)

a['Salary_Max_Estimate'] = a['Salary_Max_Estimate'].astype(int)
a = a[a['Salary_Min_Estimate'] >= 100]

a = a.to_csv('AllIN.csv',index = False)

Split data into each csv files

import pandas as pd
import numpy as np

df = pd.read_csv('Allin.csv')
df

df=df.reset_index()

df = df.rename(columns = {'index' : 'job_id'})

df = df.rename(columns = {'Job Title' : 'Job_Title'})
df = df.rename(columns = {'Job Description' : 'Job_Description'})

df.insert(loc=0,column='company_id',value=df['Company_Name'].factorize()[0]+1)
df.insert(loc=0,column='location_id',value=df['City'].factorize()[0]+1)

measurement = df[['location_id','company_id','job_id',]]
measurement

job =
df[['job_id','Job_Title','Job_Description','JobCategory','Rating','Salary_Min_Estimate','Salary_
Max_Estimate']]
jobs = job.to_csv('jobnew.csv',index=False)
job

company = df[['company_id','Company_Name','Founded','Type of
ownership','Size_employee','Industry','Sector']]

company = company.drop_duplicates(subset = ['company_id'],keep = 'first').reset_index(drop
= True)
company
company = company.to_csv('companynew.csv',index=False)

location = df[['location_id','City','State']]

location = location.drop_duplicates(subset = ['location_id'],keep = 'first').reset_index(drop =
True)

locations = location.to_csv('locationnew.csv',index=False)

measurement.to_csv('measurementnew.csv',index=False)

Loading data into MYSQL from Python

import pandas as pd
data = pd.read_csv('measurementnew.csv', index_col=False, delimiter = ',')
data.dtypes
#replace nan to None
data=data.where((pd.notnull(data)), None)

import mysql.connector
import pandas as pd
from getpass import getpass
from mysql.connector import connect, Error
try:

with connect(
host="localhost",
user="root",
password=getpass("Enter password: "),
auth_plugin='mysql_native_password',
database='DataJob2'

) as connection:
with connection.cursor() as cursor:

for i,row in data.iterrows():
sql = "INSERT INTO DataJob2.measurement VALUES (%s,%s,%s)"
cursor.execute(sql, tuple(row))
connection.commit()

print("Record inserted")
except Error as e:

print(e)

Keyword searching and word counting python coding

import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer

df = pd.read_csv('Allin.csv')

df.head()

grouped = df.groupby(df.JobCategory)
da = grouped.get_group("DataAnalyst")
de = grouped.get_group("DataEngineer")
ds = grouped.get_group("DataScientist")

da1 = da[['Job Description']]
de1 = de[['Job Description']]
ds1 = ds[['Job Description']]

da1['Job Description'] = da1['Job Description'].str.lower()
de1['Job Description'] = de1['Job Description'].str.lower()
ds1['Job Description'] = ds1['Job Description'].str.lower()

da1['Job Description'] = da1['Job Description'].str.replace('\n',' ',regex=False)
de1['Job Description'] = de1['Job Description'].str.replace('\n',' ',regex=False)
ds1['Job Description'] = ds1['Job Description'].str.replace('\n',' ',regex=False)

da1['Job Description'] = da1['Job Description'].str.replace('\W',' ',regex=True)
de1['Job Description'] = de1['Job Description'].str.replace('\W',' ',regex=True)
ds1['Job Description'] = ds1['Job Description'].str.replace('\W',' ',regex=True)

import nltk
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from nltk.corpus import stopwords
nltk.download('stopwords')

DA
cat = da1['Job Description'].str.cat(sep=' ')
keyword = ["sql", "python", "c++", "java","tableau","oracle","data",

"business","management","aws","nosql","mongodb","machine",
"learning","cloud",'software','database','design','regression']

all_stopwords = stopwords.words('english')
all_stopwords.extend(['work','jobs','etc','us','needs','degree','years','required','including','job','ne
w'])
words = cat.split(' ')
filterword = ' '.join((filter(lambda ele:
ele not in all_stopwords, words)))
kw = ' '.join((filter(lambda ele: ele in keyword, words)))
v = CountVectorizer()
matrix = v.fit_transform([filterword])
counts = pd.DataFrame(matrix.toarray(),columns=v.get_feature_names())
s = counts.sum(axis = 0)
s = s.sort_values(ascending=False)
a = s.to_csv('Da.csv')
v1 = CountVectorizer()
matrix1 = v1.fit_transform([kw])
counts1 = pd.DataFrame(matrix1.toarray(),columns=v1.get_feature_names())

s1 = counts1.sum(axis = 0)
s1 = s1.sort_values(ascending=False)
a1 = s1.to_csv('Da1.csv')
Text = open(r'datext.txt','w')
String = kw
Text.write(String)
Text.close()
s1

DS
cat = ds1['Job Description'].str.cat(sep=' ')
keyword = ["sql", "python", "c++", "java","tableau","oracle","data",

"business","management","aws","nosql","mongodb","machine",
"learning","cloud",'software','database','design','regression']

all_stopwords = stopwords.words('english')
all_stopwords.extend(['work','jobs','etc','us','needs','degree','years','required','including','job','ne
w'])

words = cat.split(' ')
filterword1 = ' '.join((filter(lambda ele: ele not in all_stopwords, words)))
kw1 = ' '.join((filter(lambda ele: ele in keyword, words)))

v = CountVectorizer()
matrix = v.fit_transform([filterword1])
counts = pd.DataFrame(matrix.toarray(),columns=v.get_feature_names())
s = counts.sum(axis = 0)
s = s.sort_values(ascending=False)
a = s.to_csv('Ds.csv')

v1 = CountVectorizer()
matrix1 = v1.fit_transform([kw1])
counts1 = pd.DataFrame(matrix1.toarray(),columns=v1.get_feature_names())
s1 = counts1.sum(axis = 0)
s1 = s1.sort_values(ascending=False)
a1 = s1.to_csv('Ds1.csv')

Text = open(r'dstext.txt','w')
String = kw1
Text.write(String)
Text.close()

s1

DE
cat = de1['Job Description'].str.cat(sep=' ')
keyword = ["sql", "python", "c++", "java","tableau","oracle","data",

"business","management","aws","nosql","mongodb","machine",
"learning","cloud",'software','database','design','regression']

all_stopwords = stopwords.words('english')

all_stopwords.extend(['work','jobs','etc','us','needs','degree','years','required','including','job','ne
w'])

words = cat.split(' ')
filterword2 = ' '.join((filter(lambda ele:
ele not in all_stopwords, words)))
kw2 = ' '.join((filter(lambda ele: ele in keyword, words)))

v = CountVectorizer()
matrix = v.fit_transform([filterword2])
counts = pd.DataFrame(matrix.toarray(),columns=v.get_feature_names())
s = counts.sum(axis = 0)
s = s.sort_values(ascending=False)
a = s.to_csv('De.csv')

v1 = CountVectorizer()
matrix1 = v1.fit_transform([kw2])
counts1 = pd.DataFrame(matrix1.toarray(),columns=v1.get_feature_names())
s1 = counts1.sum(axis = 0)
s1 = s1.sort_values(ascending=False)
a1 = s1.to_csv('De1.csv')

Text = open(r'detext.txt','w')
String = kw2
Text.write(String)
Text.close()

s1

